
Wireless Link Reversal Algorithm Simulation

Charles Wang

Information Trust Institute

University of Illinois Urbana-Champaign

IL, United States

Charleswang007@gmail.com

Abstract— This project is an extension of the Ad-hoc

Walkie-Talkie project by UIUC PhD Lewis Tseng and my

colleague UIUC undergraduate Pratch Piyawongwisa. Ad-hoc

Walkie-Talkie is an application simulating walkie-talkie on top

of an ad-hoc wireless network. A wireless sensor network

comprises a number of sensor nodes, each of which has limited

energy supply as well as intrinsic sensing and communicating

capabilities. This paper focuses on link reversal algorithms,

specifically the full reversal algorithm, which provides a simple

mechanism for routing in ad hoc wireless distributed networks.

This project involves four phases: design, implementation,

simulation and analysis. Our main goal is to build a simple

routing simulation tool for future studies. Hopefully our

proposed simulation program will benefit the UIUC Wireless

Networking Group, which conducts research on various

aspects pertaining to wireless networking.

Keywords-link reversal, event-driven simulation

I. INTRODUCTION

Ad-hoc Wireless Walkie-Talkie employs

communications on top of single-hop IP broadcast, sending

UDP packets to the broadcast address, *.*.*.255, with

Ghazale’s mutual exclusion algorithm as its core application.

The person who requires token becomes speaker and can

broadcast messages to nearby walkie-talkies via exchanging

heart-beat message with each other periodically. In the

initialization stage, a phone chooses the phone with largest

ID to be its parent. After one phone acquires the token, all

phones use Ghazale’s algorithm to exchange tokens.

Ad-hoc and sensor networks are emerging area of

research that has brought up many interests and attention.

“A mobile ad hoc network is a temporary interconnection

network of mobile wireless nodes without a fixed

infrastructure. In the Ad-hoc Walkie-Talkie project

describing above, the actual implementation of ad hoc

network is already completed. This paper therefore aims to

understand the fundamentals of ad hoc and sensor networks

based on computational algorithms and theories. We focus

on link reversal algorithms for Ad hoc Wireless Distributed

Networks.
The first link reversal routing algorithms were introduced

by E.M. Gafni and D.P.Bertsekas in 1981[10]. The full

reversal algorithm is obvious and straightforward if an ad

hoc network were converted to a destination oriented graph.

The full reversal algorithm works by one simple rule:

Whenever a node becomes a sink, it reverses its entire

incoming links [7]. One of the advantages of the full

reversal algorithm is that it does not need to update at every

link failure. “If a link gets lost for some reason, there might

be still another directed path to the destination from every

node and so the graph could still be destination oriented.”[7]

We implement the famous event-driven simulation to

simulate unexpected hazards occurring during the normal

operation of link reversal algorithms. Event-driven

simulation is a modeling technique in which flow of control

within the system is driven by events rather than sequence.

Furthermore, events are managed dynamically by an event

scheduler, typically represented by an event queue, which

triggers the simulation of hazards in our ad hoc wireless

network.

We simulate the full link reversal algorithm and display

the result on screen in the form of network topology.

“Network topology is a representation of the interconnection

between directly connected peers in a network [2].” In this

paper exclusively, network topology refers to the network

connection between different walkie-talkies. The actual

topology of the fast-evolving Internet network is difficult to

be graphed. Network topology constantly changes as nodes

and links join a network, personnel move offices, and

network capacity is increased to deal with added traffic.

Keeping track of network topology manually is a frustrating

and often impossible job. Yet, accurate topology

information is necessary [2]. However difficult it may sound,

graphical information is essential and invaluable for

network simulation and management. In the analysis phase,

we make as few assumptions about the network as possible

and quantitatively evaluate the performance of the full link

reversal algorithm. By doing so, we aim to have a better

understanding of distributed ad-hoc network and its various

routing algorithms.

II. DESIGN

The design process is critical for our actual

implementation of the link reversal simulation tool. Six

main issues need to be considered during the design phase:

Graphical Layout, Mobility Control, Network Properties,

Link Reversal Algorithms. Destination Oriented Graph and

Event-Driven Simulation

A. Graphical Layout

We would like to model the deployment of our ad hoc

walkie-talkie mobile phones utilizing a simple mathematical

topology program. More precisely, we imagine that the

network nodes are placed on a graphical Euclidean plane,

with two-dimensional Euclidean space denoted . In the

Euclidean plane, the vertices are the wireless nodes. Java

applets are popular and frequently used in computer

graphics. A Java applet is an applet delivered to users in the

form of Java bytecode and can run in a Web browser using

a Java Virtual Machine (JVM). To display and print 2D

graphics on our Java program, we need also classes from the

Java Abstract Window Toolkit (AWT) for producing actual

output. The AWT contains all of the classes for creating

user interfaces and for painting graphics and images.

Under the AWT package, we construct graphical objects

from the class Graphics, the abstract base class for all

graphics contexts that allow an application to draw onto

components that are realized on various devices.

Coordinates are infinitely thin and lie between the pixels of

the output device. The default origin of user space is the

upper-left corner of the component’s drawing area. The x

coordinate increases to the right and the y coordinate

increases downward. Hence the top-left corner of a window

is (0, 0). All coordinates are specified using integers.

B. Mobility Control

Recall that in ad hoc wireless network, nodes are

moving and as a result, the underlying communication graph

is changing over time, and the nodes have to adapt quickly

to such changes and reestablish their routes [8]. Say node A

moves gradually from (x1, y1) at time t1 to (x2, y2) at time

t2. Since our measure the network time is in unit of seconds,

we simply calculate the displacement each node moves in

one second and therefore figure the node’s position at every

second. From our example above, if time t is between t1 and

t2, then at time t node A is at position

C. Network Properties

We use a mathematical model to quantitatively evaluate

the performance of the Ad-hoc network, at the meantime

struggling to make as few assumptions about the network as

possible. One of the most important properties of

communicating nodes is their broadcast capability. “Two

nodes can communicate if they are within their mutual

transmission range, which in an unobstructed and

homogenous environment translates into whether their

Euclidean distance is at most the maximum transmission

range R. Thus model is widely known as unit disk graph [5].”

We thus set the maximum transmission range as the

simulator input.

In a typical sensor network application, sensor

deployment and coverage are both significant. For a given

configuration and placement of sensors, it is important for

the deployed collection of sensors be able to communicate

with one another. It follows that a connected sensor network

requires good enough coverage property and connected

property. Sahni and Xu in [2] mention that “for the coverage

property, we need to know the sensing range of individual

sensors (we assume that a sensor can sense events that occur

within a distance r, where r is the sensor’s sensing range)

and for the connected property, we need to know the

communication range, c, of a sensor. To simplify the

calculation, we follow Kar and Banergee’s [32] assumption

that the sensing range equals the communication range (i.e.,

r = c)

Let’s imagine a scenario where five phones together form

an ad hoc network. The communication and sensing range

for each phone is the same. We model this scenario using

five unit-disk graphs, as shown in Figure 2. Now we assume

phone A takes the token and begins broadcasting message to

its neighbors, as shown in Figure 3. With r = c, three

different broadcast result can be generated: not connected,

somehow connected, and well-connected. The three

scenarios are shown in Figure 4, 5, and 6, respectively. In

Figure 4, each unit disk barely touches its neighbor and does

not overlap; thus those nodes are not connected. In figure 5,

each unit disk overlaps with its adjacent neighbors. As a

result, phone A can broadcast to B and C, but not D and E.

We describe this situation as somehow connected. Finally,

Figure 6 displays a situation where one unit disk overlaps

with the remaining disks. This is a well-connected network.

D. Link Reversal Algorithms

Busch, Surapaneni and Tirthapura give a general

description of link reversal algorithms. “Link reversal

algorithms provide a simple mechanism for routing in

communication networks whose topology is frequently

changing, such as in mobile ad hoc networks. A link

reversal algorithm routes by imposing a direction on each

network link such that the resulting graph is a destination

oriented DAG. Whenever a node loses routes to the

destination, it reacts by reversing some (or all) of its

incident links. [8]” In this paper, the full reversal algorithm

is our primary focus.

In a mathematical modeling graph, a path is a sequence

of vertices such that each adjacent pair of vertices is

connected by an edge. If the graph is directed, the edges that

form the path must all be aligned with the direction of the

path. The length of a path is the number of edges it traverses.

In addition, a graph is strongly connected if there is a path

from every vertex to every other vertex. Moreover, degree

of a vertex is the number of edges incident on that vertex.

In our graphical representation of the network, each

node has a link with each other node within its broadcast

radius. In the beginning, this underlying graph is undirected,

i.e. the communication links are all bidirectional. We then

transform the undirected graph to a destination-oriented

graph using our so-called ranking algorithm, which will be

introduced shortly.

For full reversal algorithm, “when a node finds that it

has become a sink (has lost all of its outgoing links), then

the node reacts by reversing the directions all of its

incoming links. The link reversals due to one node may

cause adjacent nodes to perform reversals, and in this way,

the reversals propagate in the network until the routes to the

destination are reestablished. [8]”

To implement full reversal, we decide to assign an

“arrow-in” data structure to each node. Each node keeps its

own record of “arrow-in” list, where information regarding

its neighbor links’ destination is stored in “arrow-in” objects,

each of which is a tuple in the form of (Neighbor, In).

Neighbor is the ID number of the connected node, and In

tells the direction of their link. 1 means the link is incoming

to the link; 0 means the link is outgoing from the link. If the

number of incoming links equals the degree of convex of a

node, we say that the node becomes a sink, and its

connected links are reversed.

E. Destination Oriented Graph

To produce a graph that is destination oriented, we

assign each node a rank number and use the number to

determine the direction of each link. We set the rank number

of the destination node to be 0. Then neighbors of the

destination node are assigned a rank number 1. Then

neighbors of neighbors of the destination node are assigned

a rank number 2. A node cannot not be assigned a rank

number more than once, and the process continues until all

the nodes in graph have their own rank numbers. Each node

generates a tuple (Rank, ID), with Rank the rank number

and ID their identification number. We assign the direction

of each link based on information gathered from every

tuples. If n is an integer ranging from 1 to the maximum

rank number assigned, we draw an arrow from nodes with

rank number n, to nodes with rank number n-1. If two nodes

have the same rank number, we draw an arrow from the

node with higher ID number to the node with lower ID

number. For instance, if node A has tuple (Rank_A, ID_A)

and node B has tuple (Rank_B, ID_B), a directed link from

node A to node B is generated if Rank_A > Rank_B, or

Rank_A = Rank_B but ID_A > ID_B.

The resulting destination-oriented graph is said to be

acyclic because every directed path in the graph leads to one

single destination. In addition, with our proposed ranking

algorithm, a link cannot have two different orientations.

With aid of the destination-oriented graph, routing

simulation becomes fairly easy: a node forwards the

receiving packet on any outgoing link, and the packet will

eventually reach the destination.

F. Event-Driven Simulation

We mentioned above that event-driven simulation is a

modeling paradigm in which flow of control within the

system is driven by events rather than sequence. Despite the

concern about performance, event-driven simulation has

several advantages. First of all, events are flexible and

managed dynamically by an event scheduler. Furthermore,

an event scheduler handles both synchronous and

asynchronous models with arbitrary timing delays. Just as

most literature on the subject of event-driven simulation, we

represent our event scheduler using an event queue. The

event queue performs three separate tasks at every time step:

1. Removing items from the event queue due for processing.

2. Performing appropriate action/updates/etc. 3. Future

events being added to the event queue if they are determined

and those events will be processes at the appropriate

time-step.

Events are placed in the event queue as objects, with

fields Time, Action and Data. Time tells the event scheduler

when the event should be triggered. Action tells the event

scheduler what the event does. Finally, data is the

information needed for execution of the event. As the event

scheduler assign events at every time step, executing an

event triggers a process which may generate more signal

assignments to be placed on the event queue. We believe

that the simplicity of event-scheduler data structure helps us

understand fundamental issues in real-world ad hoc wireless

network scenario, where hazards happen irregularly.

III. IMPLEMENTATION

We use Java for actual implementation. The architecture

of our full link reversal simulator is as follows. A main

program and two auxiliary classes comprise the simulator.

The main program triggers the thread and does graph

painting, while two auxiliary classes, Event and

EventPriorityQueue, are the core data structures for our

implementation of the event-driven simulation. Since we

built the link reversal simulator from scratch, our software

development process is step by step, as shown in the

hierarchical order of several main programs: Move,

Reversal, Reversal_1, ReversalEventDriven and

ReversalMultipleNodes. Illustration of simulator

architecture, auxiliary classes and main program are shown

in Figure 7, 8 and 9. Next we give brief description of these

classes.

IV. SIMULATION

After successfully implementing our link reversal

simulator in Java, we are excited to test out its functionality.

We simulate at least one scenario for each of the main

programs: Move, Reversal, Reversal_1,

ReversalEventDriven and finally ReversalMultipleNodes.

We herein attach screenshots of the running program for

each of simulation examples.

We put together previous efforts and create our final

version of link reversal simulator, which can be functional

on a web browser. The Link Reversal Simulator is the final

product of the 6-week ITI (Information Trust Institute)

summer research program at University of Illinois,

Urbana-Champaign. Our simulator analyzes and predicts

what happens in an ideal wireless sensor network. With

Design Implement
Simu

lation
Analysis

features such as mobility and topology control, we believe

our simulation tool will benefit the UIUC Wireless

Networking Group, which conducts research on various

aspects relating to wireless networks.

V. ANALYSIS

After building our simulator, we would like to generate

some tests and analyze its performance. In [8]. Busch and

others present the first formal performance analysis of link

reversal algorithms. Specifically, they study these

algorithms in terms of work (number of node reversals) and

the time needed until the network stabilizes to a state in

which all the routes are reestablished.” They reach a

conclusion that the full reversal algorithm requires O ()

work and time, where n is the number of nodes which have

lost the routes to the destination.

VI. CONCLUSION

So far we have shown detail progress for our Link

Reversal Simulator during four phases: Design, Implement,

Simulation and Analysis. In reality, although routing

algorithms maintain routes to any particular destination in

the network, the lack of a fixed infrastructure makes routing

between nodes a hard problem. Using the simulator, we

have observed how reversals propagate in the network until

the routes to the destination are reestablished. Finally, we

sincerely hope our simulator will further future research and

course work.

VII. ACKNOWLEDGMENT

Special thanks to the guidance from Prof. Nitin Vaidya.

VIII. REFERENCES

[1] S. Sahni and X. Xu, “Algorithms for Wireless Sensor Networks,”

University of Florida, Gainesville, FL. September 7, 2004.

[2] R. Siamwalla, R. Sharma and S. Keshav, “Discovering Internet
Topology,” Cornell Network Research Group, IEEE Infocom, 1999.

[3] Z. Shen, Y. Chang, C. Can and X. Zhang, “A Topology Maintenance
Algorithm Based on Shortest Path Tree for Wireless Ad hoc
Networks,” National Key Lab of Integrated Service Network, Xidian
Univeristy, Xi’an, China

[4] P. De and S. K. Das, “Epidemic Models, Algorithms and Protocols in
Wireless Sensor and Ad-hoc Networks,” University of Texas at
Arlington, TX

[5] R. Wattenhofer, “Algorithms for ad hoc and sensor networks,” ETH
Zurich, Zurich, Switzerland. April 2005.

[6] K. Kar and S. Banerjee, “Node placement for connected coverage in
sensor networks,” Proc WiOpt 2003: Modeling and Optimization in
Mobile, Ad Hoc and Wireless Networks, 2003.

[7] N. Born, “Analysis of Link Reversal Routing Algorithms for Mobile
Ad Hoc Networks,” Seminar of Distributed Systems WS. April 2005.

[8] C. Busch, S. Surapaneni, S. Tirthapura, “Analysis of Link Reversal
Routing Algorithms for Mobile Ad Hoc Networks,” July 2003.

[9] T. Lammle, “CCNA(Cisco Certified Network Associate) Study
Guide,” 1999.

[10] E.M. Gafni and D.P. Bertsekas, “Distributed algorithms for
generating loop-free routes in networks with frequently changing
topology,” IEEE trans. On commun, COMM-29:

[11] D. Miorandi, H.P. Tan and M.Zorzi, “Ad Hoc Networks with
Topology Transparent Scheduling Schemes,” Dep. of Information
Engineering, v. Grandenigo 6/B, 35131 – Padova (Italy)

Figure 1: Project Phase Flow Chart

Figure 2: Five wireless phones, each of which has

communication range c, modeled as radius of the

unit disk.

Figure 3: Phone A attempts to broadcast messages

to B, C, D, and E.

Figure 4: Not connected

Figure 5: Somehow connected

Figure 6: Well-connected

Figure 7: Link Reversal Simulator Architecture

Figure 8: Illustration of Auxiliary Classes

Figure 9: Illustration of Main Program

